NCM622电极厚度和孔隙率对锂電池性能的影响

锂電網訊:锂離子電池(LIBs)在目前的純電動或混合電動汽車中,已經成爲最具吸引力的動力來源,但事實上,由于續航焦慮、快充能力不足以及一系列安全問題,使得客戶的接受度依然很低。將沒有電化學活性的材料比例降低,是一個增加電池能量密度的好方法,例如,可以通过减少活性粘合剂和导电剂的比例来改变电极组成,可以变相的增加电化学活性材料含量。此外,还有两个个比较好的优化方法,一个是增加电极厚度来提高全電池的能量密度,另一个是降低电极的孔隙率,这样可以减少電池中的電解液含量,變相的增加活性材料百分比。

目前,已经有部分研究人员探究过一些极材料的电极厚度效应以及电极孔隙率的优化,例如LiMn2O4、LiNi1/3Co1/3Mn1/3O2和LiFePO4等材料。在这些研究中,都告诉我们电极的不同厚度和孔隙率会极大的影响電池的倍率能力。据作者所知,只有Appiah (J. Power. Source. 319 (2016) 147–158)和Gallagher (J. Electrochem. Soc. 163 (2015)A138–A149)两个课题组研究过LiNi0.6Co0.2Mn0.2O2(NCM-622)正极的厚度和孔隙率。基于多孔电极理论,他们利用不同厚度和孔隙率对相关電池特性参数建立理论模型,并通过模拟计算揭示了电极的厚度和孔隙率,对電池倍率性能结果的电荷传输和传质过程影响。但是,以上研究都过分集中在仿真LIBs优化上,而关于厚度和孔隙对電池电荷传输限制的实验性见解基本没有。

因此,在本文中,德累斯顿工业大学C. Heubner等人研究了电极的不同设计对NCM-622正极电化学性能和锂脱嵌动力学的影响。在实验设计中,作者制备了不同厚度和孔隙率的NCM-622正極材料,對其倍率性能進行了分析,然後利用電化學阻抗譜研究了電極的極化行爲。最後,作者建立了一個更加優化的數學模型來計算锂離子在電解質中的擴散極限。

image.png

【研究內容】

电极制备:正极选择为市售LiNi0.6Co0.2Mn0.2O2(NCM-622) (BASF)粉末,炭黑(Super P)和聚偏氟乙烯(PVDF)分别作为导电剂和粘结剂,N-甲基-2-吡咯烷酮(NMP)为溶剂。集流体为铝箔,其宽度为340mm,厚度为30μm,质量为8.05mg/cm2。电极中的含量比为NCM-622/炭黑/PVDF=91.4/4.4/4.2wt.%。电极厚度用K?fer, FD 200/25百分计测试得出,精确度为±3 μm。电极的孔隙率ε由下式算出:

image.png

上式中mareal,ω和ρ分別爲電極負載、質量分數、以及密度,其中活性材料爲AM、粘合劑爲B、導電劑爲CA。

image.png

在上表中,作者給出了所制備的電極的不同參數標稱值。

image.png

上圖表示NCM-622正極在不同厚度(圖a)不同孔隙率時(圖1b),于0.1C倍率下的充放電曲線。可以看到,實驗獲得的比容量與理論值(165mAh/g)幾乎相等,這表明活性材料已完全利用。在如此低的倍率下,不同電極之間的容量差異很小,電壓平台差異也很小,當電極厚度較大時,電壓平台在充放電過程中,略有增加和降低,這表示較厚電極的極化現象更大。

image.png

上图显示了不同厚度(图a)和孔隙率(图b)下的NCM-622正极速率性能测试结果。正如预期的那样,电极容量随着倍率的增加而减少,随着电极厚度的增加和孔隙率的降低,这种效应变得更加明显。例如,当电极厚度从128μm增加到212μm时,在1.0C下的容量从120mAh/g减少到40mAh/g(图a);当多孔性从45%降低到34%,在1.0C下的容量从106mAh/g降低到64mAh/g(图b)。图1、图2中的容量单位用mAh/g表示,然而,从工程学角度看,基于整个電池的重量或体积容量更具有说明性。因此電池中除了活性材料外,还包括粘合剂、导电剂、隔膜、集流体和液体电解质等,这些额外的质量和体积对電池的能量密度有着决定性作用。如果单单看活性材料的质量,具有高孔隙率和薄厚度的的电极,可能表现出最优异的倍率性能,但是如果考虑到集流体和隔膜等附加质量,能量密度将会大幅降低,而在评估电极或電池性能时,必须考虑这些附加质量。

?image.png

因此,作者在文章中计算全電池的比容量和能量密度时,不是仅仅考虑了正极活性材料的部分,而是将电极、隔膜、集流体甚至类似面积容量的石墨负极综合起来计算(上图)。可以看到,增加电极厚度和减少孔隙率,電池在低倍率下的容量会更高,但是,随着充放电倍率的增加,厚度更薄和孔隙率更高的电极表现出更优越的性能,这是由于高倍率下,薄厚度和高孔隙率的电极具有更快的转移动力学和传质特性。

image.png

为了进一步了解电极不同参数对電池反应动力学和传质的影响,作者对電池进行了电化学阻抗谱(EIS)测试。如上图所示,作者比较当电位在3.9 V时,不同厚度(图a)和孔隙率(图b)的Nyquist图。为了更明显的对比,作者将電池欧姆电阻产生的阻抗设置为零。Nyquist图在高频和中频区显示出两个半圆,而在低频区则显示出一条倾斜的直线,其中第一个半圆通常归因于活性材料和集流体之间的接触电阻,第二个半圆通常为SEI界面处的电荷转移,而低频区的直线为活性材料和/或液体电解质中的锂离子扩散。显然,电极的厚度和孔隙率不同,将严重影响阻抗曲线,为了对阻抗进行量化,作者拟合了一个等效电路(图b),以表示上述不同的电荷传输过程。

image.png

在上圖中,作者將通過擬合電路獲得的阻抗數據進行對比,圖a爲不同厚度電極的比阻抗,圖b爲不同放電倍率下獲得的比容量。正如預期的那樣,由于電荷傳輸的橫截面積較大,電解質電阻隨著孔隙率的增加而降低,同時由于更高的質量負載導致更長的傳輸路徑,電解質電阻隨電極厚度的增加而增加。當比較圖a和圖b時,可以看出倍率性能與比電阻有關,可以看出,增加電極的厚度會導致更大的比電阻和更低的倍率性能,對于相同的電極厚度,比電阻隨著孔隙率的增加而增加,因此倍率性能得到改善。

image.png

在分析阻抗的時候,需要考慮到兩種不同的影響:1)活性顆粒與集流體的接觸,2)電極中的活性粒子和粒子接觸(上圖)。在極片的輥壓過程中,電極厚度和輥壓力對總接觸電阻的貢獻可能不同,從而導致接觸電阻與不同參數之間的複雜關系。隨著孔隙率的增大和電極厚度的減小,比電荷轉移電阻也隨之減小。並且從上圖的橫截面掃描電鏡圖像中也可以看出,較高的輥壓力甚至導致二次粒子的變形和開裂。

image.png

上图a为NCM-622正极不同厚度和孔隙率的DLC(diffusion-limited C-rate)拟合图。可以看到,随着厚度的增加和孔隙率的降低,DLC明显降低,例如,S1电极的DLC (L=129μm, ε=43%)约为1.0C,而S9电极的DLC(L=212μm, ε=34%)约为0.2C。为了评估锂离子扩散限制对电极性能的影响,作者对单个电极的DLC进行了倍率性能测试,上图b和c显示了不同NCM-622电极相对于所应用的倍率(图b)绘制并归一化到DLC(图c)时获得的相对容量。在图b中,可以根据厚度和孔隙率的差异,明显观察到电极的倍率性能的不同,且随着厚度的增加和孔隙率的降低,倍率能力明显降低。而图c中的相对容量,则没有什么差异。当倍率低于DLC时,電池容量接近理论值;当倍率高于DLC时,電池容量将显著降低,这表明,在高倍率下,DLC以及锂离子在电解质中的扩散是一个限速过程。

image.png

为了说明電池的不同设计参数对可获得能量和功率密度的影响,作者根据实验结果绘制了Ragone图。在上图中,显示了重量和体积能量密度和功率密度的关系。由上图可以得出,对于低功耗应用,例如传感器等,可以通过增加电极厚度和减少孔隙率来提高能量密度;而对于高功率应用,例如電動汽車,则电极越薄、孔隙率越高越有利。

?

【文章結論】

在本文中,作者制備了不同厚度和孔隙率的NCM-622正極,對其倍率性能進行了分析,利用電化學阻抗譜研究了極化行爲,並且建立了一個數學模型來估計锂離子在電解質中擴散極限的影響。

通讀全文,可以得出以下主要結論:

在降低电解质中的接触电阻和有效锂离子扩散率的同时,降低电极的孔隙率将增加電池的比电阻和电荷转移电阻。

電極厚度的增加將增加比電阻、電荷轉移和接觸電阻,同時降低電解質中锂離子的有效擴散率。

在低倍率下,電化學性能與比電阻、電荷轉移和接觸電阻有關;而在較高倍率下,锂離子在電解質中的擴散成爲限制過程。

因此,增加電極厚度和降低NCM-622正極的孔隙率可以適度增加能量密度,但會顯著降低倍率性能和功率密度。

C. Heubnera, A. Nickol, J. Seeba, S. Reuber, N. Junker, M. Wolter, M. Schneider, A. Michaelis, Understanding thickness and porosity effects on the electrochemical performance of LiNi0.6Co0.2Mn0.2O2-based cathodes for high energy Li-ion batteries, Journal of Power Sources, 419 (2019) 119–126, DOI: 10.1016/j.jpowsour.2019.02.060

返回 ?


三星SDI负极Al2O3陶瓷涂覆18650锂電池低温循环及安全性表现

了解更多

高能量密度长寿命锂電池的负极材料选择策略?

了解更多

详解電動汽車比亚迪唐EV系统

了解更多

NCM622电极厚度和孔隙率对锂電池性能的影响

了解更多



众乐快3官网是中国最早致力于研究气氛保护系统的公司,至今已发展成为集研发/制造/服务一体,具有领域核心技术的中国品牌。旗下产品包括:惰性气氛工作箱、惰性气氛保护舱、核级屏蔽舱、氣體淨化系統、锂電池生产线、真空鍍膜系统等,产品广泛应用于核工業、金属3D打印、激光焊接、OLED研发与制造、化工、科研教育等领域,并全心为各领域伙伴提供优质服务。

更多了解請訪問:www.fengdahg.com ?